Comparison – Throwing vs Hitting a ball (Aero Dynamics)


The idea is to compare different sports types by reducing their complex physics to a few concrete variables. Namely, how far can you toss/hit a ball, depending on its own size and the length of any sort of bat? (e.g. golf club, baseball bat, racquet, … – or none, in case of throwing it yourself, like basketball, volleyball, …)

To reduce the complexity of this setup, it’s best to compare just very few sports with distinct characteristics to each other.

For example:

1) Throwing Basketball  –  2) Throwing Tennisball

3) Hitting Baseball  –  4) Hitting Golfball

To ease the comparison, this setup focuses solely on the total throwing distance, compares which of the sports does fair the best, and analyzes factors why this is.

Some Variables you might want to include:

  • Size of the ball
  • Weight of the ball
  • Size of the bat
  • Weight of the bat
  • Acceleration path (how much do you rotate your body before hitting the ball, how much distance does your arm/bat cross before hitting the ball, …)
  • The initial speed of the ball (at impact or letting go)
  • The surface of the ball (smooth, pimples, dents, fur, …)
  • Including differences in wind speed / direction

Here are some key questions, where you could either put one of them as the main focus of the whole sequence or instead use these to motivate a deeper dive along the way:

  • Why does a large ball (basketball) fly further if you throw it, a small ball further if you hit it?
  • Why does a ball fly further if the “stick” is longer?
  • What difference does the surface of a ball make? Why does a pimpled one fly further?
  • Why do things fly further if you rotate your body when hitting it? Why do you not rotate when putting it? (Golf)


Alternative – Focus mostly on Aero Dynamics

Instead of comparing the aspects above qualitatively, you may also want to go more in-depth into Aero Dynamics. Most of the variables stay the same, but we’d suggest focusing mostly on one sport activity (e.g. Throwing basketball *or* golf *or* …) and analyzing the results that way.

Afterward, you may also like to extend the lesson sequence by comparing the sport with the other options (like baseball and so on) and look out for differences.

Interview with professional triathlete Dominik Sowieja

Professional triathlete and engineer Dominik Sowieja gives insights in his carrer as an athlete but also working as an engineer. In this interview he answers questions from students and is an inspiration to anyone to push one’s limits to the personal boundaries and always try to improve. How technology and his curiosity for MINT subjects helped shape his career is documented in this interview.

This is the link to the video:

Interview with professional cyclist Gerrit Glomser

Former professional cyclist Gerrit Glomser answering questions about his career from students. He is an inspiration on how understanding MINT topics and technology help imporove personal performance. He is now the founder of the company GAIRRIT and helps athletes to perfom better using technology and biophysiological knowledge.

Link to the video:

Spinning Top / Torque


This is a short overview (goals, exercises) about combining the topic of torque with the practice of cycling.


  • Students explain why bicycles stay stable during cycling (even during tight turns)


  • Trying to balance yourself while sitting on a standing bike vs. cycling on it
  • „Slow race(driving on a line/course as slow as possible)
  • Spinning  a wheel while sitting on a rotatable  chair

Link to image: Torque-Overview

Link to other lesson sketches: Cycling Topic Collection


Theory of HR change while swimming- cosinuss

Description in english see below.
Esta presentación es la base de en un día de natación utilizando el sensor de oído de cosinuss°. El contenido se basa principalmente en los efectos biológicos que aparecen durante la natación, especialmente con respecto a los cambios en la frecuencia cardíaca. Enlace a la presentación Powerpoint: STEM on the move Menorca

This presentation is based on a swimming day using the cosinuss° in-ear sensor. Content is mostly based on biological effects that appear during swimming, especially regarding changes in heart rate.

Link to Powerpoint presentation: STEM on the move Menorca

Mechanics while Cycling

PowerPoint Presentation with different ideas coming later


PHP Code Snippets Powered By :