Comparison – Throwing vs Hitting a ball (Aero Dynamics)

 

The idea is to compare different sports types by reducing their complex physics to a few concrete variables. Namely, how far can you toss/hit a ball, depending on its own size and the length of any sort of bat? (e.g. golf club, baseball bat, racquet, … – or none, in case of throwing it yourself, like basketball, volleyball, …)

To reduce the complexity of this setup, it’s best to compare just very few sports with distinct characteristics to each other.

For example:

1) Throwing Basketball  –  2) Throwing Tennisball

3) Hitting Baseball  –  4) Hitting Golfball

To ease the comparison, this setup focuses solely on the total throwing distance, compares which of the sports does fair the best, and analyzes factors why this is.

Some Variables you might want to include:

  • Size of the ball
  • Weight of the ball
  • Size of the bat
  • Weight of the bat
  • Acceleration path (how much do you rotate your body before hitting the ball, how much distance does your arm/bat cross before hitting the ball, …)
  • The initial speed of the ball (at impact or letting go)
  • The surface of the ball (smooth, pimples, dents, fur, …)
  • Including differences in wind speed / direction

Here are some key questions, where you could either put one of them as the main focus of the whole sequence or instead use these to motivate a deeper dive along the way:

  • Why does a large ball (basketball) fly further if you throw it, a small ball further if you hit it?
  • Why does a ball fly further if the “stick” is longer?
  • What difference does the surface of a ball make? Why does a pimpled one fly further?
  • Why do things fly further if you rotate your body when hitting it? Why do you not rotate when putting it? (Golf)

 

Alternative – Focus mostly on Aero Dynamics

Instead of comparing the aspects above qualitatively, you may also want to go more in-depth into Aero Dynamics. Most of the variables stay the same, but we’d suggest focusing mostly on one sport activity (e.g. Throwing basketball *or* golf *or* …) and analyzing the results that way.

Afterward, you may also like to extend the lesson sequence by comparing the sport with the other options (like baseball and so on) and look out for differences.

Cardiovascular system & performance

 

This is a short overview (goals, exercises) about combining the topic of the cardiovascular system with the practice of cycling.

Goal:

  • Students explain stress factors on the cardiovascular system and describe/perform  efficient/healthy ways of cycling

Exercises:

  • comparing (practically/theoretically) sprint cycling with moderate cycling – pro and contra, including dangers for the body
  • discussing key factors for a healthy/safe performance (heat, water, muscle stress, …)

Link to image: Cardiovascular-System-Overview

Link to other lesson sketches: Cycling Topic Collection

 

Posture / Safety

 

This is a short overview (goals, exercises) about combining the topic of posture with the practice of cycling.

Goal:

  • Students list a few measures for safe cycling and perform a healthy posture on bicycles.

Exercises:

  • cycling with different postures (esp. The back) or with various heights of saddle/handlebars and comparing the feeling
  • watching the performance of other students (e.g. via video and slow-motion) and evaluating their form
  • comparing the impact (e.g. on watermelons) with and without safety gear

Link to image: Posture-Overview

Link to other lesson sketches: Cycling Topic Collection

 

Spinning Top / Torque

 

This is a short overview (goals, exercises) about combining the topic of torque with the practice of cycling.

Goal:

  • Students explain why bicycles stay stable during cycling (even during tight turns)

Exercises:

  • Trying to balance yourself while sitting on a standing bike vs. cycling on it
  • „Slow race(driving on a line/course as slow as possible)
  • Spinning  a wheel while sitting on a rotatable  chair

Link to image: Torque-Overview

Link to other lesson sketches: Cycling Topic Collection

 

Gears & Levers

 

This is a short overview (goals, exercises) about combining the topic of the Gears & Levers with the practice of cycling.

Goal:

  • Students compare bicycles to simple levers and explain the applications of the gears.

Exercises:

  • Cycling with different gear settings or bicycles with differently sized tires
  • Using simple levers to lift objects vs. lifting them directly
  • Use detached cycling components to create winches for a better comparison
  • comparing travel distance per pedal cycle  for different settings

Link to image: Gears-Levers-Overview

Link to other lesson sketches: Cycling Topic Collection

 

Inclined Plane

 

This is a short overview (goals, exercises) about combining the topic of the inclined plane with the practice of cycling.

Goal(s):

  • Students discuss how steepness affects the efficiency of cycling (OR)
  • Students explain and apply different gear settings depending on the steepness of the slope

Exercises:

  • trying out different gear combinations while cycling
    •  … on a horizontal plane
    •  …up a hill (at different angles)
  • comparing travel distance per pedal cycle for different settings
  • runners vs. cyclists on a steep slope –> who is faster – and why?
  • Extra: Looking at the forces applying to the bicycle

Link to image: Inclined-Plane-Overview

Link to other lesson sketches: Cycling Topic Collection

 

Golden Rule of Mechanics

 

This is a short overview (goals, exercises) about combining the topic of the Golden Rule of Mechanics with the practice of cycling.

Goal:

  • Students describe the rule in words (F1⋅s1 = F2⋅s2) and use it to evaluate different routes.

Exercises:

  • cycle up hills on different sides with different steepnesses
  • comparing pictures of different routes across a mountain path, discussing options
  • use different gears or tires of different sizes

Link to image: Cycling-Golden-Rule-Overview

Link to other lesson sketches: Cycling Topic Collection

 

STEM Cycling – Topic Overview TU-BS

 

Here you can find an overview of several short lesson ideas concerning the combination of STEM topics (physics, biology) and the sport of cycling in a school context.

PDF Document: Cycling Overview PDF

PowerPoint: Cycling Overview PPT

Links to the individual pages:

Friction & Cycling

Golden Rule of Mechanics

Inclined Plane

Gears & Levers

Spinning Top / Torque

Energy Conversion & Momentum

Posture / Safety

Cardiovascular System & performance

 

Friction & Cycling

 

This is a short overview (goals, exercises) about combining the topic of friction (with air or due to using brakes) with the practice of cycling.

Goal:

Students describe un-/desired types of friction in cycling and methods of de-/increasing them.

Exercises:

  •  letting the bicycle roll (after reaching a certain speed or just down a slope) while trying different poses to reduce air resistance (attach an umbrella on the rear end?)
  •  driving on different surfaces (asphalt, soil, sand, …)
  •  After reaching a specific speed, stop the bike by a) braking b) just letting it roll c) using oiled brakes

Link to image: Cycling-Friction-Overview

Link to other lesson sketches: Cycling Topic Collection

 

Energy Conversion & Cycling

 

This is a short overview (goals, exercises) about combining the topic of Energy Conversion with the practice of cycling.

Goal(s):

  • Students describe energy conversions at the example of a bicycle  (OR)
  • Students explain the efficiency of a bike compared to running by using momentum

Exercises:

  •  Rolling down from a slope/hill from different heights
  •  Stopping movement while on a bike vs. while walking (with a mattress)
  •  Describing what happens in different top/valley configurations

Link to image: Cycling-Energy-Conversion-Overview

Link to other lesson sketches: Cycling Topic Collection

 

PHP Code Snippets Powered By : XYZScripts.com